KUVEMPU UNIVERSITY BIOTECHNOLOGY

Bachelor of science (B.Sc.) Semester scheme Curriculum structure for upgraded programme – 2024-25 In accordance with SEP

Sl.	Course/	Title of Paper	Subject	Teaching	Semester	Internal	Total	Credits	Examination
No	Paper Code		Category	hours	end	assessment	marks		duration
					exams				
				Semeste	r - 1				
1	BT – MC	Biomolecules	MC – T	03	80	20	100	03	3Hrs
	-I	and							
	Practical -	metabolism	MC - P	04	40	10	50	02	3 Hrs
	1								
Tot	al		I	07	120	30	150	05	
				Semeste	r - 2				
2	BT –MC -	Cell and	MC - T	03	80	20	100	03	3Hrs
	Π	molecular							
	Practical -	biology	MC – P	04	40	10	50	02	3 Hrs
	II								
Tot	al			07	120	30	150	05	
				Semeste	r - 3				
3	BT –MC -	Microbial	MC – T	03	80	20	100	03	3Hrs
	III	technique,							
	Practical -	biophysics and	MC – P	04	40	10	50	02	3 Hrs
	III	biostatistics							
4	Elective/	Immunology	EL/	02	40	10	50	02	2 Hrs
-	Optional	and	OP -1						
	optional	Immonotechni	01 1						
		ques							
		Genomics and	-						
		Proteomics							
Tot	al			09	160	40	200	07	
				Semeste	r - 4				
5	BT – MC	Genetic	MC – T	03	80	20	100	03	3Hrs
	-IV	Engineering							
	Practical -	and	MC – P	04	40	10	50	02	3 Hrs
	IV	Bioinformatics							
		1							

6	Elective/	Environmental	EL/	02	40	10	50	02	2 Hrs
	Optional	Biotechnology	OP -2						
	1	Medical	-						
		Biotechnology							
		and							
		Bionanotechno							
		logy							
Tot	al			09	160	40	200	07	
				Semeste	r - 5				I
7	BT –MC -	Plant and	MC - T	03	80	20	100	03	3Hrs
	V	Animal							
	Practical -	Biotechnology	MC – P	04	40	10	50	02	3 Hrs
	П								
Tot	Lal			07	120	30	150	05	
				Semeste				-	
8	BT –MC -	Bioprocess	MC – T	03	80	20	100	03	3Hrs
U	II	Technology	1110 1		00	_0	100	00	01110
	Practical -		MC – P	04	40	10	50	02	3 Hrs
	II		MC - r	04	40	10	50	02	51118
0				02	40	10	50	0.2	
9	Project/			02	40	10	50	02	
	Dissertati								
	on/								
	internship								
Tot	al			09	160	40	200	07	
		Gr	and Total	48	840	210	1050	36	
		Gr	and Total	48	840	210	1050	36	

II Semester B.Sc. Degree (SEP Scheme) BIOTECHNOLOGY

Program Name	B. Sc Biotechnology			Semester	Seco	nd
Course Title	Cell and Molecular Biology					
Course No.	BT -MC – II Theory T			No. of Credits 3		
Contact hours	48 hrs			Duration of Exam 3 Hou		ours
Formative Assessment Marks 20			Sı	ummative Assessment M	Iarks	80

Unit I

Basic Cytology: The cell theory, ultrastructure of plant and animal cell, different types of Cells-Prokaryotes and eukaryotes. Cell cycle and its regulation; Cell-ECM and cell-cell interactions; cell motility and migration; cell death: different modes of cell death and their regulation (apoptosis, necrosis, necroptosis, autophagy, senescence etc.).

Unit II

Genetics: Monohybrid & dihybrid crosses, back-crosses, test-crosses, analyses of autosomal and sex linkages, genetic mosaics, genetic epistasis in context of developmental mechanism. Chromosomal aberrations: Numerical and structural.

DNA Replication and DNA Repair: DNA polymerases, mechanisms of DNA replication in prokaryotes and eukaryotes DNA replication models, Mutagens and DNA damage, DNA repair and recombination.

Unit III

Transcription: Transcriptional initiation, elongation and termination; post-transcriptional modification: splicing and addition of cap and tail, breakdown of selective and specific mRNAs through interference by small non-coding RNAs (miRNAs and siRNAs).

Regulation of transcription: Concept of operon – Inducer and repressor operon models.

Unit IV

Translation: protein translation machinery, ribosomes - composition and assembly; universal genetic codes, degeneracy of codons, Wobble hypothesis; Iso-accepting tRNA; mechanism of initiation, elongation and termination; post-translational modifications. Protein sorting and targeting.

Suggested Readings:

10 Hrs

14 Hrs

12 hrs

12 hrs

1. Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., & Walter, P. (2008). Molecular Biology of the Cell (5th Ed.). New York: Garland Science.

2. Lodish, H. F. (2016). Molecular Cell Biology (8th Ed.). New York: W.H. Freeman.

3. Krebs, J. E., Lewin, B., Kilpatrick, S. T., & Goldstein, E. S. (2014). Lewin's Genes XI.

Burlington, MA: Jones & Bartlett Learning.

4. Cooper, G. M., & Hausman, R. E. (2013). The Cell: a Molecular Approach (6th Ed.). Washington: ASM; Sunderland.

5. Hardin, J., Bertoni, G., Kleinsmith, L. J., & Becker, W. M. (2012). Becker's World of the Cell. Boston (8th Ed.). Benjamin Cummings.

6. Watson, J. D. (2008). Molecular Biology of the Gene (5th ed.). Menlo Park, CA:Benjamin/Cummings.

Program Name	B. Sc Biotech	nology	Semester	Second	
Course Title	Cell and Molecular Biology				
Course No.	BT -MC - II P Practical		No. of Credits	2	
Contact hours	64 hrs.		Duration of Exam 3 Hours		
Formative Assessment Marks 10			Summative Assessmen	nt Marks 40	

PRACTICAL II: CELL AND MOLECULAR BIOLOGY

- 1. Basics of microscopy simple, compound microscope.
- 2. Study on type of cells- Prokaryotes and Eukaryotes.
- 3. Use of Micrometer and calibration, measurement of onion epidermal cells and yeast.
- 4. Study of divisional stages in mitosis from onion root tips.
- 5. Study of divisional stages in meiosis in grasshopper testes/onion or Rheo flower buds.
- 6. DNA isolation: Sheep liver or Coconut endosperm
- 7. Agarose gel electrophoresis.
- 8. Spectral analysis and DNA quantitation
- 9. Genetics Problems.

Model Practical Examination Scheme B.Sc. Biotechnology

PRACTICAL: II

II-SEMESTER (Biomolecules and Metabolism)

(Formative Assessment Marks: 10; Summative Assessment Marks: 40)

Time: 3 Hrs Max Marks: 40 15 M Q1. Conduct any one of the following experiment **Scheme of Valuation** Writing Principle -3M Conducting experiment -5M Calculation/Tabular column /observation -5M Result-2M 10 M Q2. Conduct any one of the following experiment **Scheme of Valuation** Conducting experiment -5M Calculation/Tabular column /observation and report -5M Q3. Identify and comment on A and B 2.5X2=5 M Identification - 1M Comment/Description- 1.5 M (Blood sugar level, Rf values of amino acids, urine profile, lipid profile) Q4. Record 5 M

5 M

Q5. Viva

a.

b.

c.

•

•

•

•

a.

b.

•

•

II Semester B.Sc. Degree Examination (SEP Scheme) BIOTECHNOLOGY

Time: 3 Hrs Max. marks: 80 **Instructions: 1. Answer all the questions.** 2. Draw neat labelled diagrams wherever necessary

PART-A

1. Answer all the five questions		$2 \ge 5 = 10$
a.		
b.		
с.		
d.		
е.		
	PART-B	
Answer any six of the following:		5 x 6 = 30
2.		
3.		
4.		
5.		

- 7. 8. 9.
 - **PART-C**

Answer any four of the following:	$10 \ge 4 = 40$
10	

10. 11.

6.

- 12.
- 13.
- 14.
- 15.

I Semester B.Sc. Degree (SEP Scheme) BIOTECHNOLOGY

Program Name	B. Sc Biotechnology			Semester	First	
Course Title	Biomolecules and Metabolism					
Course No.	BT-MC - I Theory			No. of Credits	3	
Contact hours	48 hrs			Duration of Exam		urs
Formative Assessment Marks 20		20	Su	mmative Assessment Ma	arks	80

Unit I

Carbohydrates: Definition, Classification, Fischer and Howarth structure of monosaccharides and Disaccharides - Ribose, Glucose, Galactose and Fructose, Sucrose, Maltose, Lactose. Reducing and non-reducing sugars.Polysaccharidesclassification: homo and heteropolysaccharides, Structure of Starch and Chitin. Carbohydrates in health and diseases.

Lipids: Definition, Classification and biological properties. Fatty acids- unsaturated and saturated fatty acids. Essential fatty acids and their biological importance.Biological role of lipids-Phospholipids, Glycolipids and Cholesterol.

Unit II

Proteins and Enzymes: Amino acids- general structure, essential and non-essential amino acids, classification based on polarity, Titration of amino acids - zwitter ionic structure. D-and L- amino acids. Structure and properties of peptide bond. Structural organization of proteins -primary, secondary, tertiary and quaternary structure of proteins, Biological importance of proteins.

Enzymes: Nomenclature and classification, mechanism of enzyme action - Lock and key hypothesis, Induced Fit hypothesis. Enzyme kinetics - Michelis - Menton equation and Lineweaver-Burk plot. Enzyme inhibition. Application of enzymes in Agriculture, Industries and Medicine.

UNIT-III

Nucleic Acids: Nucleosides & Nucleotides - structure & nomenclature. DNA-Types, Secondary structure of DNA (Watson and Crick model), RNA- Types and biological functions, structure of t-RNA (Clover leaf model).

UNIT-IV

Basics of metabolism:Basic thermodynamics: free energy, enthalpy and entropy. Basic terminologies: Anabolism, catabolism, primary metabolism and secondary metabolism. Carbohydrate metabolism: Glycolysis and its regulation, gluconeogenesis. TCA cycle and electron transport chain. Calvin Cycle, C4 and CAM pathway.

Lipid metabolism: Beta-oxidation, Biosynthesis of fatty acids.

08 hr

14 hr

14 hr

12 hr

<u>Amino acid Metabolism</u>: Glucogenic and ketogenic amino acids, general pathways of degradation, Urea cycle, General pathways of synthesis of amino acids.

<u>Metabolism of nucleotides</u>: Biosynthesis of purines and pyrimidines and degradation of purines and pyrimidines.

Suggested Readings:

- 1. An Introduction to Practical Biochemistry, 3rd Edition, (2001), David Plummer; Tata McGraw Hill Edu.Pvt.Ltd. New Delhi, India
- 2. Biochemical Methods,1st Edition, (1995), S. Sadashivam, A. Manickam; New Age International Publishers, India
- 3. Introductory Practical biochemistry, S. K. Sawhney & Randhir Singh (eds) Narosa Publishing. House, New Delhi, ISBN 81-7319-302-9
- 4. Experimental Biochemistry: A Student Companion, Beedu Sasidhar Rao& Vijay Despande(ed). I. K International Pvt. LTD, New Delhi. ISBN 81-88237-41-8
- 5. Standard Methods of Biochemical Analysis, S. K. Thimmaiah (ed), Kalyani Publishers, Ludhiana ISBN 81-7663-067
- 6. Principles of Biochemistry: 6Eds. Albert L Lehninger, Tata_McGrawHill Publications, New York, USA.

Program Name	B. Sc Biotech	nnology	Semester	First	
Course Title	Biomolecules and Metabolism				
Course No.	BT-MC – I P	Practical 1	No. of Credits	2	
Contact hours	64 hrs		Duration of Exam 3 Hours		
Formative Assessment Marks 10			Summative Assessmen	nt Marks 40	

PRACTICAL 1: BIOMOLECULES AND METABOLISM

- 1. Qualitative analysis of sugars.
- 2. Qualitative analysis of amino acids
- 3. Reducing sugar estimation by DNS method.
- 4. Protein estimation by Biuret method
- 5. Determination of activity of alpha amylase
- 6. Separation of amino acids by circular paper chromatography.
- 7. Estimation of iodine value of lipids.
- 8. Qualitative analysis of metabolites in urine sample-urea, uric acid, creatinine, albumin,glucose, sterol and ketone bodies

Model Practical Examination Scheme B.Sc Biotechnology

PRACTICAL: 1

I-SEMESTER (Biomolecules and Metabolism)

(Formative Assessment Marks: 10; Summative Assessment Marks: 40) Max Marks: 40

Time: 3 Hrs

15 M

- a.
- b.

c.

Scheme of Valuation

- Writing Principle -3M
- Conducting experiment -5M
- Calculation/Tabular column /observation -5M

Q1. Conduct any one of the following experiment

• Result-2M

Q2. Conduct any one of the following experiment 10 M

a.

b.

Scheme of Valuation

- Conducting experiment -5M
- Calculation/Tabular column /observation and report -5M

Q3. Identify and comment on A and B 2.5X2=5 M

- Identification 1M
- Comment/Description- 1.5 M

(Blood sugar level, Rf values of amino acids, urine profile, lipid profile)

Q4. Record	5 M
Q5. Viva	5 M

I Semester B.Sc. Degree Examination (SEP Scheme) BIOTECHNOLOGY

Time: 3 Hrs Max. marks: 80 **Instructions: 1. Answer all the questions.** 2. Draw neat labelled diagrams wherever necessary

PART-A

1. Answer all the five questions		$2 \ge 5 = 10$
a.		
b.		
с.		
d.		
е.		
	PART-B	
Answer any six of the following:		$5 \ge 6 = 30$
2.		
3.		
4.		
5.		

- Answer any four of the following: $10 \ge 4 = 40$ 10.
 - 11.

6. 7. 8. 9.

- 12.
- 13.
- 14.
- 15.

PART-C